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Abstract. Given a sequence of vectors in a Hilbert space, we propose to use the spectrum of
the associated Gram matrix as a tool for extracting statistical information on the sequence. We
examine two simple models in some detail: the fractional shift where the sequence is generated
by a deterministic unitary dynamics and random normalized vectors in a high-dimensional space
chosen at a given density. In both cases, the limiting eigenvalue distribution of the Gram matrix is
explicitly found. We relate our results to the notion of growth entropy and recover in the stochastic
case the eigenvalue distribution of the Wishart matrices.

1. Introduction

Our concern in this paper is to extract some statistical information from sequences of
normalized vectors in a Hilbert space. Such sequences arise naturally in quantum dynamics,
either by a stroboscopic observation of the usual Schrödinger-type evolution of wavefunctions
or by kicked evolutions where one records the state of the system immediately after each kick.
Much wilder sequences, partly randomly generated, are also interesting in situations where it
is hopeless to study the deterministic evolution.

It is common practice to analyse the time evolution of an initial wavefunction in terms
of Wigner or Husimi functions, at least in situations allowing for such a description; e.g.
quantum mechanics in terms of the usual position and momentum operators or spins with total
angular momentumj . Coherent states often play a distinguished role. One also tries to relate
geometrical properties of eigenfunctions of the Hamiltonian, such as the location of nodes, to
orbits of the limiting classical system when ¯h tends to zero (orj to infinity). Many references
can be found in [3].

We shall not consider in this paper specific structures of a quantum dynamical system
related to its classical limit, but rather consider statistical properties of time sequences of
vectors, analogous to the relative frequencies of letters in long words. Unlike classical letters,
which belong to a discrete set and have distance 1 from one another, quantum states are
somewhat fuzzy and can almost coincide. The natural separation between two statesϕ and
ψ is given by 1− |〈ϕ,ψ〉|2. It turns out that a notion of relative frequency can be obtained
by considering the spectrum of the Gram matrix built on a sequence of vectors. One can, in
particular, distinguish on the basis of the spectrum of the Gram matrix between initial states
with short periods and states that wander wildly through the Hilbert space. This is argued in
section 2.
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In the remainder of the paper, we consider essentially two models: a deterministic
evolution which can be considered as a fractional shift and a random evolution obtained
by choosing independently normalized vectors in anN -dimensional space according to the
uniform distribution on the unit sphere. We compute in both cases the eigenvalue distribution
of the Gram matrix when the length of the sequence tends to infinity.

In the deterministic case, it provides us with a notion of effective dimension occupied by
the initial state during its evolution. This dimension, which is usually strictly smaller than
the algebraic dimension, can be called entropic. In fact, we relate it to the growth entropy
introduced in [14]. This is dealt with in section 4.

In the random case, the eigenvalue distribution of the Gram matrix of sequences of length
τN tends asN → ∞ to a deterministic distribution which was found by Marchenko and
Pastur while studying the spectral distribution of the Wishart ensemble [10]. The parameter
τ > 0 can be interpreted as a rescaled time, which is short in comparison to the scale at which
quantum effects are dominant but large with respect to the level separation in the spectrum of
the Gram matrix. The non-classical limiting distribution is therefore a semi-classical trace of
the quantum character of the initial system [4].

The limiting distribution is obtained in terms of its Stieltjes transform. In section 6,
the expectation of the limiting eigenvalue distribution is computed in a combinatorial way.
Section 7, written with L Pastur, contains the main result on the random case, namely the weak
convergence with probability one of the eigenvalue distribution to its deterministic limit. The
proof relies on an operator-analytic method: the resolvents of the Gram matrices are shown to
converge in probability to the Stieltjes transform of the limiting measure.

2. Motivation and definitions

Truly quantum dynamical systems with compact phase space are finite-dimensional in virtue
of the uncertainty principle. As each state occupies a same volume ¯h, the dimension of their
Hilbert space of states isN = 1/h̄. Planck’s constant has here a rather symbolic meaning: for
d-dimensional systems it is thedth power of the actual Planck constant, while ¯h = 1/(2j + 1)
for a spin with angular momentumj . A quantum evolution in discrete time, also called
kicked evolution, is determined by a unitary Floquet operatoru. In the Schr̈odinger picture
ϕ 7→ uϕ is the evolution between two consecutive kicks. We face the problem of studying
time sequences8 = (f, uf, . . .) generated by a Floquet operatoru as it acts repeatedly on an
initial conditionf .

Intuitively, one expects the overlap〈f, unf 〉between the initial statef and its time-evolved
states to be small if the dynamics is sufficiently irregular. Quite the other extreme happens in
case of a very regular dynamics: thenuT f will be similar tof for someT � N .

In the following, we denote byH anN -dimensional Hilbert space with scalar product
〈. , .〉. We consider a sequence8 of K vectors inH:

8 = (ϕ1, ϕ2, . . . , ϕK).

Using the inner product onH, we define aK ×K Hermitian matrix08 as follows:

08 := [〈ϕi, ϕj 〉]i,j=1,...,K . (1)

This matrix we call theGram matrix, built with the sequence of vectors8. If there is no
confusion possible, we leave out the superscript8. 0 is positive semi-definite and its rank is
the maximum number of independent vectors in8, i.e. the dimension of the space spanned
by the vectors in8. In particular,0 is non-singular if and only if the vectorsϕ1, . . . , ϕK are
independent. The spectrum of0, 6(0), is independent of the order of theϕj in 8 and of
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multiplying theϕj with a complex number of modulus one. Moreover, it has a clear geometric
interpretation: let{γ1, γ2, . . . , γK} be the eigenvalues of0, repeated according to multiplicity;
then, its`th elementary symmetric invariant

ε` :=
∑

3⊂{1,...,K}
#(3)=`

∏
j∈3

γj

is equal to the sum of the squares of the`-volumes of the parallelotopes spanned by{ϕj |j ∈ 3},
where3 runs through the size-` subsets of{1, 2, . . . , K}. For proofs, see [7]. Here we shall
use Gram matrices for statistical purposes, namely for analysing properties of sequences of
vectors, e.g. as generated by a quantum dynamics.

Let us for a moment consider the classical case, i.e. a sequence of natural numbers
i = (i(1), i(2), . . . , i(K)), i(j) ∈ {1, . . . , N}, which we identify with the sequence
e := (ei(1), ei(2), . . . , ei(K)) for an orthonormal basis{e1, e2, . . . , eN } of the Hilbert space.
Groupingei(`) with equal indexj , the Gram matrix is block-diagonal with blocksE(j) of the
type  1 1 . . . 1

...
...

. . .
...

1 1 . . . 1

 .
The dimension ofE(j) is precisely the multiplicitym(j) of j in i. As the spectrum ofE(j)
consists of the non-degenerate eigenvaluem(j) and the (m(j)−1)-fold degenerated eigenvalue
zero, we find that6(0) determines precisely the amount of different numbers appearing in
i with their multiplicity. The spectrum of the Gram matrix of a very regular sequencei will
consist of a few large naturals and a highly degenerated zero, while for sequences with many
different indices the spectrum will be concentrated on small natural numbers appearing with
high multiplicities.

The same interpretation remains valid for the general non-commutative case: a Gram
matrix with spectrum concentrated around small numbers points to a vector wandering wildly
through the Hilbert space of the system and is a sign of chaotic behaviour. More regular
motion, such as precession or slow diffusion, signals its presence by large eigenvalues and a
high degeneracy of eigenvalues close to zero. In contrast to the classical case however, the
non-zero eigenvalues of a Gram matrix are generically non-degenerate and eigenvalues are no
longer limited to natural numbers so that a same vector can now be visited a fractional number
of times.

To illustrate briefly the meaning of the spectrum of the Gram matrix, we consider a simple
dynamics, which we shall study in more detail later. Consider the spaceH = L2(T, dθ/2π)
of square integrable functions on the one-dimensional torus on which we define

u : H→ H : f 7→ uf (θ) := eiθf (θ) 06 θ < 2π. (2)

Starting from an initial conditionϕ1 = f , we computeϕ2 = uf, ϕ3 = u2f, . . . , ϕK = uK−1f

and construct the Gram matrix0u of this sequence of vectors:

0u`,m = 〈u`−1f, um−1f 〉 = 〈f, um−`f 〉
wherem, ` = 1, . . . , K.

If we choose for initial condition the constant functionf = 1, then the dynamics generates
an orthonormal set inHand the spectrum of the Gram matrix consists of theK-fold degenerated
value one. There is strictly no overlap between vectors at different times. If we choose, e.g., for
initial conditionf (θ) = √2χ[0,π ](θ), the characteristic function of [0, π ], then we are dealing
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Figure 1. Eigenvalues of the Gram matrix for the dynamics
(2) (K = 50).

with the ‘square root’ of the previous shift. For this initial condition, the matrix elements of
0u can easily be computed:

0u`,m =


1 if m = `
0 if m− ` even and not equal to 0

2i/π(m− l) if m− ` odd.

Computing numerically the eigenvalues of0 is not difficult. For instance, forK = 50
they are plotted in figure 1. We see that approximately half the number of eigenvalues lie
around two, the other half lie close to zero and a few are in between these two values. Roughly
speaking, this means that every vector is met approximately twice.

3. The Stieltjes transform

The first objective in studying Gram matrices is to obtain the asymptotic eigenvalue distribution
when the dimension of the matrix tends to infinity. For every naturalK we have a self-adjoint
K-dimensional matrix08 with eigenvaluesλK1 , . . . , λ

K
K , to which we associate the empirical

eigenvalue distribution

ρK(dx) := 1

K

K∑
i=1

δ(x − λKi ) dx (3)

onR. ρK is also called integrated density of states or eigenvalue counting measure. We are
interested in finding the limiting eigenvalue distribution

ρ(1) := lim
K→∞

ρK(1) = lim
K→∞

1

K
#{λKi ∈ 1}

where1 is any Borel subset ofR, i.e. in finding the weak limit ofρK asK →∞.
Instead of directly finding the limiting distribution, we shall focus on its Stieltjes transform.

For any probability measureν onR the complex functionI (z, ν) defined by

I (z, ν) :=
∫
R
ν(dt)

1

t − z Im (z) 6= 0

is called theStieltjes transformof ν, wherez 7→ I (z, ν)

• is analytic onC \ R
• satisfies Im(I (z, ν)) · Im (z) > 0 for Im (z) 6= 0 and (4)
• behaves asymptotically asI (z, ν) = −1/z + o((Im z)−1).

These three conditions are also sufficient to guarantee thatI is the Stieltjes transform of a
probability measure. The following result [13] (Perron–Frobenius) states the inverse operation
in terms of the distribution functionn(x) := ν(]−∞, x]) of the probability measureν. Recall
thatn
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• is monotonically increasing
• tends to zero at−∞ and to one at∞ and
• is right-continuous.

For t0 < t1

1
2(n(t1) + n(t−1 ))− 1

2(n(t0) + n(t−0 )) = lim
ε↓0

1

2π i

∫ t1

t0

dt (I (t + iε, ν)− I (t − iε, ν)) (5)

wheren(t−) means lims↑t n(s), which exists by the monotonicity ofn. In the case of aν that
is absolutely continuous with respect to the Lebesgue measure and with a Hölder-continuous
densityρ, one finds

lim
ε↓0

I (x ± iε, ν) = lim
ε↓0

∫
R

dt
ρ(t)

t − x ∓ iε
= P

∫
R

dt
ρ(t)

t − x ± iπρ(x)

whereP
∫

indicates the Cauchy principal value. It follows immediately that

ρ(x) = lim
ε↓0

1

2π i
(I (x + iε, ν)− I (x − iε, ν)).

Using the Stieltjes transform of a probability measure rather than the characteristic function
(Fourier transform) can be quite convenient, especially in the case of probability measures with
compact support. There is a direct connection between the Stieltjes transform of the empirical
eigenvalue distribution (3)ρK and the resolventGK(z) of 08 through the spectral theorem

I (z, ρK) :=
∫
R
ρK(dλ)

1

λ− z =
1

K
TrGK(z) (6)

where

GK(z) := (08 − z)−1.

Weak convergence ofρK asK → ∞ can then be studied in terms of pointwise convergence
of theI (z, ρK) for Im (z) 6= 0.

The Stieltjes transform of the limiting eigenvalue distribution may be obtained as a solution
of an algebraic equation, as we do in section 7. A second way to obtain the Stieltjes transform
of the limiting eigenvalue distribution is through the calculation of moments. This is based on
the following calculation:

I (z, ρK) =
∫
R
ρK(dt)

1

t − z
= −

∞∑
n=0

1

zn+1

∫
R
ρK(dt)t

n = −
∞∑
n=0

mn(ρK)

zn+1

wheremn(ρK) is thenth moment of the measureρK

mn(ρK) :=
∫
R
ρK(dt)t

n = 1

K
Tr(08)n.

We assume now that all the following limits exist and are finite:

mn := lim
K→∞

mn(ρK). (7)

Is there a probability measure having these numbers as its moments? This problem is known
as themoment problem[1,13]. In general, an equivalent condition for a given sequence(mn)n
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to form a sequence of moments of a probability measure is the positivity of the determinants
(p ∈ N) [12,13]∣∣∣∣∣∣∣∣

m0 m1 . . . mp
m1 m2 . . . mp+1

. . .
. . .

mp mp+1 . . . m2p

∣∣∣∣∣∣∣∣ .
This is a condition for the existence of a probability measure and it is obviously met by
the limiting moments of (7). The moment problem is calleddeterminedif this measure is
unique, in all other cases it is called indeterminate. There exist several sufficient conditions
for determinacy on the sequence(mn)n: e.g., if the moment problem for a given sequence has
a solution of which the spectrum is a bounded set, then it is determined (i.e. this solution is
unique). A general discussion of the moment problem can be found in [1, 13], in which the
construction of the corresponding measure is also discussed.

Theorem 1 ([13]). If ρ is a solution of the moment problem, thenI (z, ρ) is analytic in the
upper complex planeIm (z) > 0. Im I (z, ρ) > 0 on the same half-plane and is asymptotically
represented by the series−∑∞0 mnz

−n−1 in any sectorε 6 arg(z) 6 π−ε with0< ε < π/2:
i.e., in these sectors one can write forz→∞

I (z, ρ) +

(
m0

z
+ · · · + mn−1

zn

)
= o(z−n) n = 1, 2, . . . . (8)

Conversely, if a complex functionf (z) is analytic in the upper complex planeIm (z) > 0,
Im f (z) > 0 and f (z) is asymptotically represented by the series−∑∞0 mnz

−n−1 in any
sector0< ε 6 arg(z) 6 π − ε with 0< ε < π/2, then there exists a unique solutionρ of the
moment problem such thatf (z) = I (z, ρ).

It is clear that the solution of the moment problem is now reduced to finding a function
f (z) which has the asymptotic representation of above. Via the Perron–Frobenius inversion
theorem (5) one can then recover the probability measureρ. Back to our situation, where
we assumed the moments to be finite, we can then use the following theorem by Fréchet and
Shohat.

Theorem 2.

(i) Let the probability measuresρK possess finite momentsmKn := ∫R ρK(dt)tn for n,K ∈ N.
Assume that the limitsmn := limK→∞mKn exist for eachn, then themn are the moments
of a probability measureρ and, if thisρ is unique, thenρK converges weakly toρ.

(ii) A sequence(ρK)K of probability measures converges weakly to a probability measure
ρ if and only if the sequence(I (z, ρK))K of their corresponding Stieltjes transforms
converges uniformly on compact subsets of the upper complex half-plane to a function
f (z) that satisfies (4). Moreover,f is the Stieltjes transform ofρ.

4. The Gram matrix and approximation entropies

In this section, we examine in more detail the example (2) of the unitary evolution that was
already mentioned at the end of section 2. We compute the distribution of the spectrum of
Gram’s matrix0u when the dimension, i.e. the number of time steps, goes to infinity. We
recall Voiculescu’s growth entropy and connect it to the spectrum of0u and finally compute
the entropy for this specific example.



On quantum dynamics and statistics of vectors 6553

We considerH = L2(T, dθ/2π) on whichu : H→ H acts like(uf )(θ) := eiθf (θ). The
matrix elements of the Gram matrix0 are then given by

0`,m = g(`−m) := 1

2π

∫ 2π

0
dθ ei(m−`)θ |f (θ)|2 (9)

for a given initial conditionf . Note that0 is constant along parallels to the diagonal. We call
0(K) theK ×K matrix obtained by cutting out the firstK rows and columns of0, i.e.

0(K)`,m := g(`−m) `,m = 1, 2, . . . , K.

The limiting eigenvalue distribution of the0(K) can be obtained through the following version
of Szeg̈o’s theorem [6].

Theorem 3. Denote by(h∧(n))n∈Z the Fourier coefficients of a real-valued functionh ∈
L∞(T) and forK = 1, 2, . . . let T (K) be theK × K matrix [h∧(j − i)]i,j=1,2,...,K , then the
empirical eigenvalue distributionρK of T (K) converges weakly toρ whenK → ∞, where
the measureρ is determined by

ρ(1) = 1

2π

∫
h−1(1)

dθ

on any Borel subset1 of T. That is, for any continuous complex functionF defined on the
essential support ofh, one has

lim
K→∞

1

K

K∑
j=1

F(γ Kj ) =
1

2π

∫ 2π

0
dθ F (h(θ))

where theγ Kj are the eigenvalues ofT (K).

We shall use theorem 3, withh = |f |2, to relate Voiculescu’s approximation entropy
with the spectral distribution of the Gram matrix. This approximation entropy is introduced
as a growth entropy [14], reflecting the mathematical idea of finding the minimal growth in
dimension of a finite-dimensional subspace that is needed to follow within a small error bar
the evolution of an initial condition under the dynamics of the system. This is to be contrasted
with observational entropies [2, 5] that are introduced on the basis of measurements on the
system, such as computing transition probabilities between states at different times, as is done
in the construction of Gram matrices.

The Hilbert space version of the approximation entropy is introduced as follows: consider
a complex Hilbert spaceH of infinite dimension. For8 a finite subset ofH andA ⊂ H,
we write8 ⊂δ A if ‖8 − A‖ < δ. For a finite subset8 of H andε > 0, the approximate
dimension of8 is

dim(8, ε) := inf {dim(V )|V finite-dimensional subspace ofH and8 ⊂ε V }
and the Voiculescu approximation entropy, given the limit exists, is

SV (ε) := lim
K→∞

1

K
dim(8, ε).

We want to make a connection between this entropy and the spectrum of the Gram matrix
08 generated with the finite set of vectors in the Hilbert space. So, starting from an initial
conditionf ∈ H, we generate8 = (ϕ1, ϕ2, . . . , ϕK) by ϕi = ui−1f whereu is a unitary
acting onH. The eigenvalues of08, arranged in increasing order and repeated according to
their multiplicity, areγj with corresponding eigenvectorsgj

08gj = γjgj j = 1, . . . , K.
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We put

Cε8 := #{λ|λ ∈ 6(08), λ > ε} (10)

and

S(ε) := lim
K→∞

1

K
Cε8.

S(ε) is a Boltzmann-like entropy in the sense that it measures the extra volume per time unit
occupied by the Gram matrix and we shall prove that, in the limitε ↓ 0, both entropies coincide.

Lemma 1. Let8 = (ϕ1, ϕ2, . . . , ϕK) be aK-tuple of normalized vectors in a Hilbert space
H and08 the corresponding Gram matrix as in (1) with eigenvaluesγj in ascending order
and repeated according to multiplicity; then

inf
V,dimV=`

max
j=1,...,K

‖ϕj − V ‖ > 1√
K

√√√√K−l∑
j=1

γj .

Proof. It is obvious that we can limit ourselves to`-dimensional subspacesV of the subspace
of H spanned by8. Suppose the infimum is reached forV = V0 and call itε. So,

inf
V,dimV=`

max
j=1,...,K

‖ϕj − V ‖ = ε.

If we denote by [V ] the projector on the spaceV , we can write

‖ϕj − V0‖2 = 1− ‖[V0]ϕj‖2

and so

ε2 > 1− 1

K

K∑
j=1

‖[V0]ϕj‖2.

In order to minimize the right-hand side, we have to maximize the sum. Thus, we should check
that

K∑
j=1

‖[V0]ϕj‖2 6 sup
V,dimV=`

K∑
j=1

‖[V ]ϕj‖2.

Suppose{ψα}α=1,...,` is an orthonormal basis forV , which we may assume to be contained
in the space spanned by8, andψα =

∑K
j=1 λαj ϕj . Let {e1, . . . , eK} be the canonical basis

in CK . The assumption that{ψα}α=1,...,K is orthonormal is equivalent to〈λα, 08λβ〉 = δα,β
whereλα :=∑K

j=1 λαj ej . It is easy to see that

K∑
j=1

‖[V ]ϕj‖2 =
∑̀
α=1

‖08λα‖2.

If we callµα = 0 1
2λα, we see that

sup
V,dimV=`

K∑
j=1

‖[V ]ϕj‖2 = sup
〈µα,µβ 〉=δα,β

∑
α

‖0 1
2µα‖2.

By the mini–max principle, this is always greater than or equal to the sum of the` largest
eigenvalues of08. �
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Theorem 4. SupposeSV (ε) andS(ε) are continuous functions ofε and suppose that the limits
limε↓0 SV (ε) and limε↓0 S(ε) exist. Then

lim
ε↓0

SV (ε) = lim
ε′↓0

S(ε′).

Proof. In a first step, we prove thatSV (
√
ε) 6 S(ε), ∀ε. Using the same notations as in the

proof of lemma 1, we therefore define the vectors

ηj :=
∑
k

〈ek, gj 〉ϕk
and the projector

Pε :=
∑
j,γj>ε

γ−1
j |ηj 〉〈ηj |.

Then we prove that‖ϕ`−Pεϕ`‖ 6 √ε, ∀` = 1, . . . , K. This implies that every vectorϕ` ∈ 8
can be approximated by an element of theCε8-dimensional subspace (10) spanned by theηj .

‖ϕ` − Pεϕ`‖2 = ‖ϕ`‖2 −
∑
j,γj>ε

γ−1
j 〈ηj , ϕ`〉〈ϕ`, ηj 〉 −

∑
j,γj>ε

γ−1
j 〈ϕ`, ηj 〉〈ηj , ϕ`〉

+
∑

j,j ′,γj>ε,γj ′>ε
γ−1
j γ−1

j ′ 〈ηj , ϕ`〉〈ϕ`, ηj ′ 〉〈ηj ′ , ηj 〉

= ‖ϕ`‖2 − 2
∑
j,γj>ε

γ−1
j 〈ηj , ϕ`〉〈ϕ`, ηj 〉

+
∑

j,j ′,γj>ε,γj ′>ε
γ−1
j γ−1

j ′ 〈ηj , ϕ`〉〈ϕ`, ηj ′ 〉
∑
k,k′
〈ek, gj 〉〈gj ′ , ek′ 〉〈ϕk′ , ϕk〉

= ‖ϕl‖2 − 2
∑
j,γj>ε

γ−1
j 〈ηj , ϕ`〉〈ϕ`, ηj 〉

+
∑

j,j ′,γj>ε,γj ′>ε
γ−1
j γ−1

j ′ 〈ηj , ϕ`〉〈ϕ`, ηj ′ 〉〈gj ′ , 0gj 〉

= ‖ϕ`‖2 −
∑
j,γj>ε

γ−1
j 〈ηj , ϕ`〉〈ϕ`, ηj 〉

=
〈
ϕ`,

(
1I−

∑
j,γj>ε

γ−1
j |ηj 〉〈ηj |

)
ϕ`

〉
.

Because{g1, . . . , gn} is an orthonormal basis, we have that

‖ϕ`‖2 = 〈ϕ`, ϕ`〉 = 0`,` = 〈e`, 0e`〉 =
∑
j

〈e`, gj 〉〈gj , 0e`〉

but ∣∣∣∣ ∑
j,γj<ε

〈e`, gj 〉〈gj , 0e`〉
∣∣∣∣ 6 ∑

j,γj<ε

|〈e`, gj 〉||〈gj , 0e`〉| 6 ε
∑
j

|〈e`, gj 〉|2 6 ε.

Secondly, we prove limε′↓0 SV (ε′) > limε↓0 S(ε). Suppose that this is not true. This
means that locally, in the neighbourhood of zero, figure 2 reflects the relation between both
entropies, whereSV (ε) = S(g(ε)).

Assuming limε↓0 S(ε) > limε′↓0 SV (ε′) means assumingg(0) > 0. Because of the
definition ofg, it follows thatSV (0) = S(g(0)) or

inf {dimV |V finite-dimensional subspace ofH,8 ⊂0 V }
= #{γ |γ ∈ 6(0) andγ > g(0)} + o(K)

= Cg(0)8 + o(K) =: s(K).
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Figure 2. Definition ofg(ε).

So, if we takes(K) dimensions to approximate, we make no error. On the other hand we
know, because of lemma 1, that the error is at least√√√√ 1

K

K−s(K)∑
i=1

γi =

√√√√√ 1

K

( K−Cg(0)8∑
i=1

γi −
K−Cg(0)8∑

K−Cg(0)8 +o(K)+1

γi

)
.

As we assumedg(0) to be strictly positive, we know that there is ãg(0), 0 < g̃(0) < g(0)
such thatS(g̃(0)) = (S(0) + SV (0))/2. This means that the first term in the square root is

always greater than or equal tõg(0)(Cg̃(0)8 − Cg(0)8 )/K which in the limitK → ∞ goes to
g̃(0)(S(0)− SV (0))/2. The second term in the square root tends to zero, because it contains
a non-extensive number of eigenvalues. This means that we end up with a contradiction.�

Finally, we want to computeS(ε) for the unitaryu defined in (2). To computeS(ε), we
should count how many eigenvalues of0 built with (f, uf, . . .) are larger thanε. This can be
simply done by using theorem 3. It suffices to consider a sequence of continuous functions
with support, say [1/2n, ‖f ‖2∞], and which are equal to one on [1/n, ‖f ‖2∞]; then

lim
ε↓0

S(ε) = 1

2π
|Ess. Supp(f )|

where ‘Ess. Supp(f )’ is the essential support off .

5. A random vector model

In this section, we focus on a stochastic dynamics: instead of considering a unitary repeatedly
acting on an initial condition, we study the spectrum of a Gram matrix constructed with
randomly generated vectors(ϕ1, . . . , ϕK) in anN -dimensional Hilbert spaceH. We can see
the caseτ := K/N � 1 as mimicking, in a way, the situation of a discrete time chaotic
dynamics. Indeed, forK � N , we can expect that there is almost no overlap between the
different vectors as we think will be the case in the chaotic situation. By increasingτ however,
the chance to pick overlapping vectors increases. This should give rise to more and more
small and large values in the spectrum of08. As for Gram matrices constructed with an initial
vectorf and its time evolutionsunf , one can expect that afterN time steps, soN vectors in
anN -dimensional Hilbert space, in a way, all degrees of freedom are used and the space is
completely filled.

The spectrum of08 is, of course, a random object but it turns out that, in the limit
K,N → ∞ and τ constant, the spectral distribution tends with probability one to a
deterministic limit given by the Marchenko–Pastur probability distributionρτ .
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We start the section by describing what is meant by randomly generated vectors and
consider briefly the classical analogue. We then turn to the determination of the limiting
eigenvalue distribution of the random Gram matrices in closed form and present two different
approaches. Both of them rely on the computation of the Stieltjes transform of the limiting
eigenvalue distribution. A first head-on computation provides us with a recursion relation
between limiting moments from which we determine the generating function; the second
approach consists of obtaining a closed equation for the Stieltjes transform considering the
resolvent of the Gram matrix.

The Gram matrix is constructed with random vectors independently picked in a finite
(N)-dimensional Hilbert space according to a sameN -dependent distributionµN . There are
several possibilities for describing such a probability distribution and we shall use the two
following: either specify the distribution of the components of the vector with respect to a
given basis or specify fork = 1, 2, . . . the density matrices∫

µN(dϕ)|ϕ⊗k〉〈ϕ⊗k|
onCN . Here, we shall only consider the unique probability distribution on the surface of the
unit sphere inCN that is invariant under all unitary transformations. This probability measure,
called uniform, will from here on be denoted byµN . The two descriptions above now become
either ∫

µN(dϕ)|ϕ⊗k〉〈ϕ⊗k| = 1(
N+k−1
k

)P sym
k (11)

whereP sym
k denotes the projector onto the fully symmetric subspace of thek-fold tensor power

of CN , or

ϕ = x

‖x‖ (12)

where x is an N -dimensional complex Gaussian random vector with identically and
independently distributed components of mean zero and variance one. By this we mean
that each of the componentsxα of x, α = 1, . . . , N , is of the formxα = yα + izα whereyα
andzα are independent random variables, normally distributed, with mean zero and common
arbitrary variance12. Due to the special form of the Gaussian distribution, we see that in terms
of generalized spherical coordinates, the distribution ofx factorizes into a product of a radial
part and an angular part. From (12) it is immediately clear that the distribution ofϕ is uniform
on the unit sphere inCN .

Before considering the Gram matrix of randomly generated vectors, we consider the
classical example presented at the beginning of section 2 which was used to give some intuitive
feeling about spectra of Gram matrices.

Consider a discrete set withN elements{1, . . . , N}. Out of this set, we choose randomly
K numbers, independently and identically distributed according to the probability distribution
3 = (λ1, . . . , λN). How many timesj is chosen will be denoted bykj . The draw
(k1, k2, . . . , kN), k1 + k2 + · · · + kN = K, where we choosekj times j , can be realized
in (

K

k1, k2, . . . , kN

)
different ways. The chance of this configuration to appear isλ

k1
1 . . . λ

kN
N . Associating withj

the unit vectorej in the orthonormal basis{e1, e2, . . . , eN }, a particular drawi = (i1, . . . , ik)
defines a Gram matrix with matrix elements

0k,` = 〈eik , eil 〉 = δik,i` .
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The spectrum6(0) of0 determines precisely how many different numbers appear ini together
with their multiplicities. An interesting question is: How many different points are visited on
average? In order to compute the expectation of the number of different elements appearing
in a particular choice, we consider

g : {0, . . . , K} → {0, 1} : g(k) = 1 for k > 1

g(0) = 0.

The expectation of the number of different points which are chosen, which we denote by #,
equals

E(#) =
∑

(k1,...,kN )

{g(k1) + · · · + g(kN)}λk1
1 . . . λ

kN
N

(
K

k1, k2, . . . , kN

)

= N −
N∑
j=1

(1− λj )K.

Taking the distribution uniform, i.e.λ1 = λ2 = · · · = λN = 1/N , andK/N = τ , we find

lim
K→∞

1

K
E(#) = 1

τ
(1− e−τ ).

It is easy to check that, in this classical case, in the limitN → ∞, the eigenvalues of0 are
Poisson distributed.

In the following, we shall be interested in the limiting eigenvalue distribution of the
random Gram matrix ensembleof densityτ > 0 which is defined as follows. Consider
an N -dimensional Hilbert spaceH, in which we choose randomlyK = τN vectors
8 = {ϕ1, . . . , ϕK} according to the uniform distributionµN (11), (12). With these vectors we
construct the Gram matrix (1)

08i,j = 〈ϕi, ϕj 〉
and we are interested in the limiting eigenvalue distribution of08 whenN → ∞ and τ
remains constant.

6. Moments of random Gram matrices

As was explained in section 3, we can calculate the limiting eigenvalue distribution of the
ensemble of random Gram matrices by computing the generating function (8) for the moments.
So, we shall compute

mn := lim
N→∞

1

K
EN(Tr 0n)

whereEN means expectation with respect to the probability measureµN . It turns out that these
moments can be expressed in terms of the number of non-crossing partitions on a circle. This
will provide us with a closed equation for the generating function of the moments and with
the limiting eigenvalue distribution through the Perron–Frobenius inversion formula. Once we
have an explicit expression for the generating function (5), we can also explicitly compute the
moments of the limiting distribution. We start by introducing and defining some of the notions
we need later on.

A partition of a setS = {1, . . . , s}, s ∈ N, on a circle is defined as follows: consider
a regulars-gon on a circle. Choose a starting point and label it with 1, label the following
points by 2, 3, . . . , s, in the clockwise direction. A partition is now a drawing of polygons
with these points as vertices. It is callednon-crossingif none of the edges of the different
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Figure 3. An example of a crossing and a non-crossing partition.

Figure 4. The non-crossing partition of figure 3
relabelled.

Figure 5. In this partition, the first polygon has corners
{1, 2}, {4}, {6}and{8}. Sok1 = 2 andk2 = k3 = k4 = 1,
n1 = n2 = n3 = 1, n4 = 2 andj1 = j2 = j3 = j4 = 1.

polygons cross each other (see, e.g., figure 3). The set of non-crossing partitions ofS having
exactlyj connected components is denoted by3(s, j) and their number byc(s, j).

For simplicity later on, we relabel thes points on the circle in the following way: all points
of the polygon to which 1 belongs get the label 1. Then we turn in the clockwise direction
around the circle. The first point we meet which did not get labelled 1 we label by 2, as we
do also for all points belonging to the polygon of 2. We continue this until we have relabelled
all points. As there werej different polygons, we end up with a drawing carryingj different
indices, one for each polygon (see, e.g., figure 4).

Consider a partition in3(n, k). We denote byk1 the interval of points on the circle to
which the ‘top corner’ of the first polygon, i.e. the polygon containing the original point 1,
belongs; we denote byk2 the interval to which the second corner of the first polygon belongs,
and so on. By top corner, we mean the set of points belonging to the first polygon that all lie
next to each other, containing the original point 1 and not being separated by a point of another
connected component of the partition. By second corner we mean the first set of points of
the first polygon carrying a label 1 and lying next to each other, that we meet after turning in
the clockwise direction around the circle after the top corner. In general, thej th corner is the
set of points carrying a label 1 and lying next to each other that we meet when continuing in
clockwise direction after the (j − 1)th corner.ni is the number of points in between theith
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and the (i + 1)th corner of the first polygon;ji is the number of different indices appearing
in theseni points. An explicit example is given figure 5. In this formulation, two drawings
which are essentially the same but rotated through an angle of 2πs/N are considered as two
different figures.

Theorem 5. Using the notations just introduced and putting

c(n, j) = 0 if n < 1

c(n, j) = 0 if j < 1 and j > n

the numberc(n, k) of elements in3(n, k) is determined by the relations

c(n, k) =
∑′

k1c(n1, j1) . . . c(nr , jr ) (13)

and

c(n, 1) = 1 for n = 1, 2, . . . .

The summation in (13) extends over allr-tuples(k1, k2, . . . , kr ) and(n1, n2, . . . , nr) such that
k1 + k2 + · · · + kr + n1 + · · · + nr = n, all kj > 0 andj1 + · · · + jr + 1= k.

Proof. In order to prove the theorem, we have to count in how many different ways we can
put k symbols onn points on a circle, remembering that there is a starting point (the original
point 1) and a direction in which we follow the circle. If we call the polygon with relabelled
indices 1 the first polygon of the partition, we know because of the non-crossing condition that
if a label (different from 1) appears between two corners of the first polygon it cannot appear
between two other corners. This means that we can consider all points between theith and the
(i + 1)th corner of the first polygon as points of a circle where we have to putji points onni
places. This can be done inc(ni, ji) different ways, while the top corner can be chosen ink1

different ways. Summing over all possibilities gives us the above expression. �

Theorem 6. The limitingnth moment of the eigenvalue distribution of the random Gram matrix
ensemble at densityτ is given by

mn =
n∑
j=1

c(n, j)τ j−1

wherec(n, j) is the number of non-crossing partitions of the set{1, . . . , n} on a circle where
we use exactlyj different symbols.

Proof. We start by computing the trace of thenth power of0

Tr 0n =
∑
i1,...,in

0i1i20i2i3 . . . 0ini1 =
∑
i1,...,in

〈ϕi1, ϕi2〉 . . . 〈ϕin , ϕi1〉.

Taking the average of the trace means that we integrate with respect to the probability measure
µN :

EN(Tr 0n) =
K∑

i1,...,in=1

∫
µN(dϕi1) . . . µN(dϕin)〈ϕi1, ϕi2〉 . . . 〈ϕin , ϕi1〉.

Each term in the sum can be seen as a partition ofn points on a circle, where to each point we
assign a number in{1, . . . , K} (see, e.g., figure 6).

The claim of the theorem is that only those terms in the sum giving rise to a non-crossing
partition contribute to the moments of0. We first prove that the contribution of the non-
crossing partitions is exactly the expression of the theorem. Later we show that the crossing
partitions do not contribute.



On quantum dynamics and statistics of vectors 6561

Figure 6. n = 8: i1 = 1, i2 = 2, i3 = 4, i4 = 1, i5 = 2,
i6 = 7, i7 = 1, i8 = 1.

Figure 7. n = 8.

Suppose, first, that we have a term in which exactlyj different symbols and no crossings
appear. By drawing them on a circle we see only single points and non-crossing chords (see,
e.g., figure 7).

In computing the integral for such a configuration, we start by integrating over an index
appearing only once on the circle, sayis :∫
µN(dϕi1) . . . µN(dϕis ) . . . µN(dϕin)〈ϕi1, ϕi2〉 . . . 〈ϕis−1, ϕis 〉〈ϕis , ϕis+1〉 . . . 〈ϕin , ϕi1〉. (14)

Because ∫
µN(dϕ)|ϕ〉〈ϕ| = 1

N
1I

we have that (14) equals

1

N

∫
µN(dϕi1) . . . ̂µN(dϕis ) . . . µN(dϕin)〈ϕi1, ϕi2〉 . . . 〈ϕis−1, ϕis+1〉 . . .

whereµ̂N indicates that we have integrated over this variable. We can do this for all indices
appearing only once, collecting for each of them a factor 1/N .

After having eliminated all single points, only indices appearing at least twice remain.
But, because of the non-crossing condition, equal indices now have to lie next to each other
and these can be contracted to one single point becauseϕ is normalized∫
µN(dϕi1) . . . 〈ϕi1, ϕi2〉 . . . 〈ϕit−1, ϕit 〉〈ϕit , ϕit 〉〈ϕit , ϕit+1〉 . . .

=
∫
µN(dϕi1) . . . 〈ϕi1, ϕi2〉 . . . 〈ϕit−1, ϕit 〉〈ϕit , ϕit+1〉 . . . .

So, we end up with a circle, again with single points on it, which we can integrate, each of
them yielding a factor 1/N . After this integration, we end up with indices appearing at least
thrice but lying next to each other. So, they can again be contracted. This procedure can
be continued until we have a circle with only single points. We can again integrate over the
remaining indices, each of them giving a factor 1/N , except for the last one where we have∫

µN(dϕir )〈ϕir , ϕir 〉 = 1.
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Figure 8. n = 8.

So, eventually, we see that a non-crossing partition where exactlyj different symbols appear,
gives a contribution 1/Nj−1. Because there are exactlyc(n, j)K(K − 1) . . . (K − j + 1) of
these partitions, their contribution is

c(n, j)
Kj

Nj−1
.

Taking all non-crossing partitions into account, we find

lim
N→∞

1

K

n∑
j=1

c(n, j)
Kj

Nj−1
=

n∑
j=1

c(n, j)τ j−1.

It remains to be shown that crossing partitions do not contribute to the moments. So,
suppose thatj different indices appear in the scalar product and that at least one crossing
occurs. We prove the statement by induction. Forj = 2 and one crossing appearing, it is true.
Indeed, the most complicated case is the one of twon/2-gones (e.g., figure 8)∫
µN(dϕi1)µN(dϕi2)µN(dϕi1) . . . 〈ϕi1, ϕi2〉〈ϕi2, ϕi1〉〈ϕi1, ϕi2〉 . . . 〈ϕi2, ϕi1〉︸ ︷︷ ︸

n

=
∫
µN(dϕi1) . . . 〈ϕi1 ⊗ · · · ⊗ ϕi1, ϕi2 ⊗ . . . ϕi2〉〈ϕi2 ⊗ . . . ϕi2︸ ︷︷ ︸

n/2

, ϕi1 ⊗ · · · ⊗ ϕi1︸ ︷︷ ︸
n/2

〉

= 1

N(N + 1) . . . (N + n/2− 1)
.

So

lim
N→∞

1

K

K(K − 1)

Nn/2
= lim

N→∞
K

Nn/2
= 0 (n > 4).

Suppose that the statement is true forj − 1 indices appearing, then it also holds forj indices.
Indeed, start by integrating over one of the indices appearing in a crossing and suppose this
index appearst times. Because of the crossing condition,t > 2. This gives rise to a factor
1/Nt . By the symmetrization procedure, we end up with

1

Nt

(∑
cycles in whichj − 1 indices appear onn− t points

)
.

Herein, the maximal contribution 1/(NtNj−2) comes from the non-crossing cycles

1

K

Kj

Nt+j−2
= Kj−1

Nt+j−2
6 Kj−1

Nj
= τ j−1

N
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which forN →∞ goes to zero. �

Next, we derive a closed expression for the generating functionF(t, τ ) of the limiting
moments

F(t, τ ) := 1 +
∞∑
n=1

mnt
n = 1 +

∞∑
n=1

tn
n∑
k=1

c(n, k)τ k−1. (15)

Theorem 7. The generating function of the limiting moments of the eigenvalue distribution of
the random Gram matrix ensemble at densityτ is given by

F(t, τ ) = 1− t + τ t −
√
(1− t + τ t)2 − 4τ t

2τ t

for τ > 0 and|t | < 1/(1 +
√
τ)2.

Proof. Let |t | < 1. The recurrence relation of theorem 5 gives

F(t, τ ) = 1 +
∞∑
n=1

tn
n∑
k=1

c(n, k)τ k−1

= 1 +
∞∑
n=1

tn +
∞∑
n=1

tn
n∑
k=2

c(n, k)τ k−1

= 1 +
t

1− t +
∞∑
n=1

tn
n∑
k=2

τ k−1
∑′

k1c(n1, j1) . . . c(nr , jr ).

The primed sum in the last line is over allr-tuples(k1, k2, . . . , kr ) and(n1, n2, . . . , nr) such
thatk1 + k2 + · · · + kr + n1 + · · · + nr = n, all kj > 0 andj1 + · · · + jr + 1= k. The last term
on the right-hand side is equal to
∞∑
r=1

τ r
∞∑
k1=1

k1t
k1

( ∞∑
k2=1

tk2

)r−1 ∞∑
n1,...nr=1

n1,...,nr∑
j1,...,jr=1

tn1τ j1c(n1, j1) . . . t
nr τ jr c(nr , jr )

=
∞∑
r=1

τ r
t

(1− t)2
(

t

1− t
)r−1

(F (t, τ )− 1)r

= 1

1− t
∞∑
r=1

(
τ t (F (t, τ )− 1)

1− t
)r

= τ t (F (t, τ )− 1)

(1− t)(1− t − τ t (F (t, τ )− 1))
.

Of course, this last expression is only true if∣∣∣∣τ t (F (t, τ )− 1)

1− t
∣∣∣∣ < 1. (16)

This will be checked at the end of this calculation. Substituting this back in the expression for
F(t, τ ), we get

F(t, τ ) = 1

1− t − τ t (F (t, τ )− 1)
.

This results in a quadratic equation inF(t, τ ) with solutions

F±(t, τ ) = 1− t + τ t ±
√
(1− t + τ t)2 − 4τ t

2τ t
.
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Because

lim
t→0

tF+(t, τ ) = 1

τ

we see thatF+(t, τ ) cannot be of the form of (15). From the explicit expression ofF(t, τ ), it
can now be checked that the function

G(t, τ ) := τ t (F (t, τ )− 1)

1− t
satisfies|G(t, τ )| < G(1/(1 +

√
τ)2, τ ) = (2 +

√
τ)−1 < 1 so that indeed (16) is satisfied.�

Now we apply the ideas of section 3. In order to solve the moment problem, we construct
a functionf by settingf (z) := −1/z F (1/z, τ ) for |z| > (1 +

√
τ)2. For thesez we can write

f (z) = −z− τ + 1 +
√
(z + τ − 1)2 − 4τz

2τz
. (17)

For all otherz ∈ Cwe definef (z) as the analytic continuation, where possible. As a result, we
get a function which is analytic inC\ [(1−√τ)2, (1+

√
τ)2]. This function has the properties

mentioned in theorem 1, so we can conclude thatf is the Stieltjes transform of the limiting
eigenvalue measure. Via the Perron–Frobenius inversion theorem (5), one can now prove the
following theorem.

Theorem 8. The expectation of the empirical eigenvalue distribution of the ensemble of
random Gram matrices at densityτ converges weakly to the Marchenko–Pastur distribution
[10]

ρτ =


δ(t − 1) if τ = 0

σ(t, τ ) if 0 < τ 6 1
τ − 1

τ
δ(t) + σ(t, τ ) if τ > 1

(18)

with

σ(t, τ ) =

√

4τ t − (t + τ − 1)2

2πτ t
(1−√τ)2 6 t 6 (1 +

√
τ)2

0 otherwise.

A three-dimensional plot of this distribution is shown in figure 9. The solid curve represents
the weight of theδ function appearing in this distribution forτ > 1.

Figure 9. The Marchenko–Pastur distribution.
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Figure 10. Cross sections of the Marchenko–Pastur distribution.

Several cross sections of this figure are shown in figure 10. For very smallτ , we must
choose relatively few vectors in a large space. This will often lead to almost orthogonal choices
and thereforeρτ will be concentrated around one. Whenτ increases to one, there is a fair
chance of many vectors overlapping and the support ofρ will simultaneously extend towards
zero, which is a lower bound of its support, and to larger positive values. Whenτ > 1 there
will almost surely be a sizeable degree of linear dependence responsible for a high multiplicity
of the eigenvalue zero. This results in the atom ofρτ with weight (τ − 1)/τ (not shown in
figure 10).

Either theorem 7 or 8 allows us to compute explicitly the moments of the limiting
eigenvalue distribution. They are given by

mn =
n∑
k=1

1

n− k + 1

(
n

k

)(
n− 1

k − 1

)
τ k−1.

For τ = 1, the moments of the limiting eigenvalue distribution are precisely the Catalan
numbers

C2j =
n∑
k=1

c(n, k) = 1

j + 1

(
2j

j

)
.

For generalτ , the first few limiting moments are

m1 = 1

m2 = 1 + τ

m3 = 1 + 3τ + τ 2

m4 = 1 + 6τ + 6τ 2 + τ 3

m5 = 1 + 10τ + 20τ 2 + 10τ 3 + τ 4

. . . .
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Theorem 8 can be considerably strengthened. In fact, the empirical distributions
themselves converge with probability one to the Marchenko–Pastur distribution. In order
to prove this, we must essentially control the fluctuations of the moments of the empirical
eigenvalue distributions well enough whenK →∞. The next section proves this convergence
by using a very different approach, namely by obtaining an algebraic equation for the limiting
distribution.

7. The resolvent of random Gram matrices†

In this section, we apply the method proposed in [8], where it is used to compute the
limiting eigenvalue distribution of certain ensembles of random matrices. The following is an
adaptation of that proof. We start from the description of the random Gram matrix ensemble
in terms of vectors obtained by normalizingN -dimensional vectors with independent complex
components, distributed according to a fixed normal distribution (11).

Let x1, . . . , xK be complexN -dimensional Gaussian vectors with i.i.d. components of
mean zero and variance one

xj =
 x1j

...

xNj

 = (xαj )α=1,...,N (19)

and putϕj := xj/‖xj‖, j = 1, . . . , K. DefineX = (x1, . . . , xK). SoX is anN × K
matrix containing theK Gaussian vectors as columns. SetM = X∗X, then we have that
Mij = 〈xi, xj 〉. Finally, letR := diag(‖xj‖), the diagonal matrix of dimensionK with the
norms of thexj as its diagonal elements. It is clear that the Gram matrix corresponding to
8 = (ϕ1, . . . , ϕK) is

0 = 08 = R−1MR−1

and its resolvent is

G = G(z) = (0 − z)−1 = R3R
with 3 := (M − zR2)−1.

We want to calculate the limit ofgN(z) := TrG(z)/K whenN,K →∞ while the ratio
τ = K/N remains constant. This limit is the Stieltjes transform of the limiting eigenvalue
distribution (6). The idea is to establish an equation forE(gN(z)) which has a non-trivial
N →∞ limit.

We need the following facts:

• The resolvent identity:letA,B be square matrices andz ∈ C and suppose that(A− z)−1

and(B − z)−1 exist, then

(B − z)−1 = (A− z)−1− (B − z)−1(B − A)(A− z)−1. (20)

• Let ξ be a complex Gaussian random variable withE(ξ) = E(ξ2) = 0 andE(|ξ |2) = 1
and let(ξ, ξ) 7→ f (ξ, ξ) be a continuously differentiable function growing polynomially
at infinity, a property which it shares with its derivatives, then

E(ξf (ξ, ξ)) = E(|ξ |2)E
(
∂f

∂ξ

)
= E

(
∂f

∂ξ

)
(21)

which can be checked by using partial integration.

† This section was written with the assistance of L Pastur, of Université Paris 7/ Denis Diderot, UMR 9994, Paris
75251, France.
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• Let x 7→ A(x) be a differentiable matrix-valued function and suppose thatA is invertible,
then

d

dx
A−1 = −A−1 dA

dx
A−1.

In particular,

∂

∂Aij
(A−1)pq = −(A−1)pi(A

−1)jq . (22)

• The resolventG(z) := (0 − z)−1 of an Hermitian matrix0 satisfies

|G(z)ij | 6 ‖G(z)‖ 6 |Im (z)|−1 i, j = 1, . . . , K. (23)

We now establish a closed equation for limN→∞ E(gN(z)).

Theorem 9. For R ∈ R+, define

UR :=
{
z ∈ C

∣∣∣∣|Im (z)| > 2 + 6τ and
|z|
|Im (z)| < R

}
. (24)

ThenlimN→∞ E(gN(z)) exists forz ∈ UR and is equal to the unique solutionf of the equation

τf (z)2 +

(
1− 1

z
+
τ

z

)
f (z) +

1

z
= 0

which satisfiesIm (z)Im (f (z)) > 0.

Proof. First we use the resolvent identity (20) to write

gN(z) = 1

K
TrG = −1

z
+

1

zK
Tr(0G)

= −1

z
+

1

zK
Tr(M3)

= −1

z
+

1

zK

K∑
i,j=1

N∑
α=1

xαixαj3ji .

We take the expectation value of this with respect to the Gaussian variables and use (21) to
obtain

E(gN(z)) = −1

z
+

1

zK

K∑
i,j=1

N∑
α=1

E(xαixαj3ji)

= −1

z
+

1

zK

K∑
i,j=1

N∑
α=1

E
(

∂

∂xαj
xαi3ji

)
.

Using (22) this becomes

E(gN(z)) = −1

z
+

1

zK
E
(
N Tr3− Tr3Tr3M + z

K∑
j=1

3jj (3M)jj

)

= − 1

z
+

1

zK
E
(
N TrR−2G− TrR−2GTrG0 + z

K∑
j=1

(R−2G)jj (G0)jj

)
.

Introducing generalized spherical coordinates, every complexN -dimensional vector
(z1, . . . , zN) corresponds to a real 2N -dimensional vector(r, θ1, . . ., θ2N−1) with r =∑

j |zj |2. The above expectation value is a sum of expectation values of the form
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E(R(r)2(θ1, . . . , θ2N−1))and because of the special form of the Gaussian distribution function
this is equal toE(R(r))E(2(θ1, . . . θ2N−1)). So we can write

E(gN(z)) = −1

z
+

1

zK
E
(

1

r2

)
E
(
N TrG− TrGTrG0 + z

K∑
j=1

Gjj (G0)jj

)
.

As

E
(

1

r2

)
= 1

N − 1

we end up with

E(gN(z)) = −1

z
+

1

z

N

N − 1
E
(
gN(z)− τgN(z)− zτgN(z)2 +

z

N
gN(z) +

z2

N
dN(z)

)
(25)

with τ = K/N as before and

dN(z) := 1

K

K∑
j=1

(Gjj )
2.

Because|gN(z)| 6 1/|Im (z)| < 2 + 6τ for everyN we see that the sequencegN(z), for
a fixedz ∈ UR and a fixedτ , is confined within a compact set. Thus there exists a convergent
subsequence. Moreover, every convergent subsequence has the same limit if we show that the
limit is the unique solutionf of the equation

τf (z)2 +

(
1− 1

z
+
τ

z

)
f (z) +

1

z
= 0

which satisfies Im(z)Im (f (z)) > 0. That this is indeed the case follows from (25) and the
estimates ∣∣∣∣ 1

N − 1
E(gN(z))

∣∣∣∣ 6 1

N − 1

1

|Im (z)|∣∣∣∣ z

N − 1
E(dN(z))

∣∣∣∣ 6 |z|
N − 1

1

|Im (z)|2
and

E(gN(z)2) = E(gN(z))2 + O(N−2).

The first two inequalities are based on (23) and the third one is proven in lemma 2. �

In view of the continuity of the one-to-one correspondence between probability measures
and their Stieltjes transforms as expressed in theorem 2(ii), theorem 9 implies the weak
convergence of the expectationsE(ρK) to the Marchenko–Pastur distribution (18). That is,
theorem 9 implies theorem 8.

We shall now prove that, not only do the expectations of the empirical eigenvalue
distributions converge to the limit given in theorem 8, but that the distributions themselves
converge to the same limit with probability one. This allows one, in particular, to use this
distribution for statistical purposes as argued in sections 1, 2 and 4. To this end, we first
introduce a probability space on which all the Gram matrices are defined simultaneously. This
space is just the infinite product space generated by the double infinite sequence of the i.i.d.
Gaussian random variables{xαj }∞α,j=1 which were introduced in (19) forα, j = 1, 2, . . . , K.
Using this space as the space of realizations of the Gram matrices we can now formulate the
following theorem.
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Theorem 10. The empirical eigenvalue distribution of the ensemble of random Gram matrices
at densityτ converges weakly with probability one to the Marchenko–Pastur distributionρτ .

Proof. Fix z ∈ UR andε > 0. By Tchebyshev’s inequality and lemma 2, there exists aC such
that

Prob{|gN(z)− E(gN(z))| > ε} 6 1

ε2
(E(|gN(z)|2)− |E(gN(z))|2)

6 C

ε2N2
.

The Borel–Cantelli lemma and theorem 9 then imply that the sequence(gN(z))N of random
complex numbers converges with probability one tof (z) as defined in (17). We now use
the following result to conclude that the sequence of random analytic functionsgN converges
uniformly with probability one to the limitf on any compact subset ofUR: suppose that
we are given a sequence of analytic functions, defined on a common compact domainD. If
the sequence converges on a countable set of points having an accumulation point inD to an
analytic function defined on the same domain, then it converges uniformly to the same limit on
D. In view of the continuity of the one-to-one correspondence between probability measures
and their Stieltjes transforms (theorem 2(ii)), we can conclude that the empirical eigenvalue
distributions of the Gram matrices converge with probability one to the limiting measureρτ
of theorem 8. �

By mimicking the proof of the Glivenko–Cantelli theorem on the uniform convergence
with probability one of the empirical distribution functions of i.i.d. random variables to
their probability law [9], one can show that the sequence of random distributions functions
ρK(λ) := ρK(]−∞, λ]) converges uniformly with probability one to the distribution function
ρτ (λ) := ρτ (] −∞, λ]). It now remains to prove the following lemma.

Lemma 2. For z ∈ UR as defined in (24)

E(|gN(z)|2) = |E(gN(z))|2 + O(N−2).

Proof. Define

γN(z) := gN(z)− E(gN(z)).
It follows that E(|γN(z)|2) = E(gN(z)γN(z)). Note thatgN(z) = gN(z). Now use the
resolvent identity (20) again to write

E(gN(z)gN(z)) = −1

z
E(gN(z)) +

1

z
E
(

1

K
Tr 0G(z)gN(z)

)
.

Once more, we apply (21) to the last expectation on the right-hand side. Using the same
notations and a similar calculation as in the proof of theorem 9 results in

E(gN(z)gN(z)) = −1

z
E(gN(z)) +

1

z(N − 1)
E(NgN(z)gN(z)−KgN(z)gN(z)

−zgN(z)2gN(z) + zgN(z)gN(z) + z2dN(z)gN(z) + h(z, z)) (26)

with

h(z, z) = 1

K
gN(z) +

z

K2

K∑
j=1

G(z)jjG(z)jj − 1

K2
TrG(z)2

− z

K2
TrG(z)G(z)G(z) +

z

K2
TrG(z)2 +

zz

K2

K∑
j=1

G(z)jj (G(z)
2)jj .
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In the first term of the right-hand side of (26) we insert (25) via the substitution of 1/z. This
results in

E(|γN(z)|2) = 1

z

N

N − 1
E(|γN(z)|2)− 1

z

K

N − 1
E(|γN(z)|2)

− K

N − 1
E(gN(z)2γN(z)) +

1

N − 1
E(|γN(z)|2)

+
z

N − 1
E(dN(z)γN(z)) +

1

z(N − 1)
E(h(z, z)). (27)

Now, we estimate the different terms in this expression. It is easy to see that

E(gN(z)2γN(z)) = E(gN(z)|γN(z)|2) + E(gN(z))E(|γN(z)|2)
and thus

|E(gN(z)2γN(z))| 6 2

|Im (z)|E(|γN(z)|
2).

Using the Cauchy–Schwarz inequality, we get

|E(dN(z)γN(z))| 6 E(|dN(z)|2)1/2E(|γN(z)|2)1/2

6 1

|Im (z)|2E(|γN(z)|
2)1/2.

Finally, remembering that|Im (z)| 6 |z|, we get∣∣∣∣E( 1

z(N − 1)
h(z, z)

)∣∣∣∣ 6 1

(N − 1)K

((
3 +

|z|
|Im (z)|

)
1

|Im (z)|2 +
2

|Im (z)|3
)
.

Combining these inequalities with (27), we end up with

aE(|γN(z)|2) + bE(|γN(z)|2)1/2 + c 6 0 (28)

with

a = (N − 2)|Im (z)| −N − 3K

|Im (z)|(N − 1)

b = − |z|
|Im (z)|2(N − 1)

c = − 1

τN(N − 1)

((
3 +

|z|
|Im (z)|

)
1

|Im (z)|2 +
2

|Im (z)|2
)
.

If we define the setUR as in (24), thenz ∈ UR impliesa > 0 andb2 − 4ac > 0. So (28)
implies

E(|γN(z)|2)1/2 6 C(τ, R)

N

with C(τ, R) a finite constant independent ofz. We conclude that forz ∈ UR
E(|γN(z)|2) 6 C(τ, R)2

N2
.

�

Note added in proof. Shortly after this work was finished, we became aware of an article of Oravecz and Petz [11] in
which the moments of the Marchenko–Pastur distribution were derived. They prove the convergence in expectation
of the moments of the empirical eigenvalue distribution of the Wishart matrices to those of the Marchenko–Pastur
distribution. This ensemble of matrices is slightly different from ours. They use another combinatorial argument due
to their description of the ensemble of random matrices.
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[6] Grenander U and Szegö G 1958Toeplitz Forms and their Applications(Berkeley, CA: University of California

Press)
[7] Horn R A and Johnson Ch R 1985Matrix Analysis(Cambridge: Cambridge University Press)
[8] Khorunzhy A, Khoruzhenko B and Pastur L 1996 Asymptotic properties of large random matrices with

independent entriesJ. Math. Phys.375033
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